Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell.

نویسندگان

  • Liping Huang
  • Linlin Gan
  • Qingliang Zhao
  • Bruce E Logan
  • Hong Lu
  • Guohua Chen
چکیده

Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells.

Combined effects of enrichment procedure and non-fermentable acetate or fermentable glucose on system performance and bacterial community for pentachlorophenol (PCP) degradation in microbial fuel cells (MFCs) were determined in this study. Co-substrate and PCP were added into MFCs either simultaneously or sequentially. Simultaneous addition with glucose (simultaneous-glucose) achieved the short...

متن کامل

Characteristics of Different Brewer’s Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars

Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...

متن کامل

Effect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell

There are several obstacles to the commercialization of PEM fuel cells.  One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...

متن کامل

Using 15N Dilution Method to Correct for Microbial Contamination When Assessing in situ Protein Degradability of Fresh Ryegrass

This experiment was done to investigate microbial contamination and in situ disappearance rates of dry matter (DM), N and 15N of fresh labeled ryegrass. Perennial ryegrass (Lolium perenne) were labeled with 15N during growth in a glasshouse, harvested at 4th leaves stage and were incubated up to 34 h in situ in the rumen of 3 individually housed sheep. The animals were fed 800 g/d chopped alfal...

متن کامل

Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell

Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa</em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioresource technology

دوره 102 19  شماره 

صفحات  -

تاریخ انتشار 2011